Z for call-by-value
Koji Nakazawa1, Ken-etsu Fujita2, and Yuta Imagawa1

1 Graduate School of Informatics, Nagoya University, Nagoya, JAPAN
knak@i.nagoya-u.ac.jp, imagawa.yuuta@d.mbox.nagoya-u.ac.jp
2 Graduate School of Science and Technology, Gunma University, Gunma, JAPAN
fujita@cs.gunma-u.ac.jp

Abstract
This work gives a new proof of the confluence of Carraro and Guerrieri’s call-by-value lambda calculus λ_v with permutation rules by the extended Z theorem, the compositional Z theorem.

1 Introduction
In general, it is hard to prove the confluence of higher-order rewriting, including (extensions of) the lambda calculus. There is a long history to give simple (or elegant) proofs for the confluence of higher-order rewriting systems and the lambda calculi: Church and Rosser’s proof with the notion of the residuals of redexes, Tait and Martin-Löf’s proofs with the parallel reduction, and Takahashi’s proof with the complete development. Dehornoy and van Oostrom’s Z theorem in \cite{5} is one of the newest techniques which is widely applicable to confluence proofs in general setting. The Z theorem says that confluence of abstract rewriting system follows from existence of a mapping satisfying the Z property: any one-step reduction $a \rightarrow b$ implies $b \rightarrow^* f(a) \rightarrow^* f(b)$. This theorem has been applied to some variants of the lambda calculus in \cite{5, 6, 2, 8}.

The Z theorem is further generalized by Nakazawa and Fujita as the compositional Z theorem in \cite{7}, which enables us to use the Z theorem with dividing rewriting systems into two or more subsystems. The compositional Z gives a simple proof of confluence of the lambda calculus with permutation rules for direct sums. Ando’s original confluence proof in \cite{3} for that system is much complicated, and we cannot naively apply the original Z theorem because it seems hard to directly define a mapping satisfying the Z property for both beta and permutation reductions.

Carraro and Guerrieri’s lambda calculus λ_v in \cite{4} is a call-by-value variant of the lambda calculus, in which they adopt permutation rules to avoid that reductions unexpectedly get stuck. In \cite{1}, this calculus is also called the shuffling calculus λ_{shuf}, and further discussed as one of call-by-value variants of the lambda calculus for open terms. As for the permutation rules for direct sums, the permutation rules of λ_v make the confluence proof much harder, and we cannot straightforwardly adapt the ordinary proof techniques with the parallel reduction or the complete development. Carraro and Guerrieri proved the confluence of λ_v by the commutativity of the β_v reduction and the permutation rules.

In this work, we show that the compositional Z theorem can be applied to λ_v. As in \cite{7}, we cannot naively adapted the original Z theorem for λ_v, and the problem can be avoided by the compositional Z. Although the outline of our proof follows \cite{7}, the main difference is that the mapping we consider here may leave redexes of permutation reductions, because the calculus has two kinds (directions) of permutation rules. Hence, we cannot apply the simplified variant of the compositional Z (Corollary 2.4 in \cite{7}).
2 λ^v_σ

In this section, the call-by-value lambda calculus λ^v_σ is introduced. The values and terms of λ^v_σ are given as follows.

\[
\begin{align*}
V & ::= x | \lambda x. M \\
M & ::= V | MM
\end{align*}
\]

The reduction rules of λ^v_σ are given as follows.

\[
\begin{align*}
(\lambda x. M)V & \to_{\beta_v} [V/x]M \\
(\lambda x. M)N & \to_{\sigma_1} (\lambda x. ML)N & (x \in FV(L)) \\
V((\lambda x. M)N) & \to_{\sigma_3} (\lambda x. VM)N & (x \in FV(V))
\end{align*}
\]

Here, V denotes values, M, N, and L denote terms, and $[V/x]M$ is the usual capture-avoiding substitution. $FV(M)$ denotes the set of free variables in M. We consider the compatible closure of the reduction rules.

This calculus is introduced for operational characterization of solvability in call-by-value lambda calculi in particular for open terms. In Plotkin’s original call-by-value lambda calculus λ_σ in [9], the term $M \equiv (\lambda y.(xx))(zz)(\lambda x.xx)$ is stuck since zz is not a value, whereas semantically it is equivalent to $(\lambda x.xx)(\lambda x.xx)$ and hence unsolvable. In λ^v_σ, M is reduced to $(\lambda y.(\lambda x.xx)(\lambda x.xx))(zz)$ by the σ-rules, and we can discover the redex $(\lambda x.xx)(\lambda x.xx)$.

3 Compositional Z

We summarize Dehornoy and van Oostrom’s Z theorem [5], and then extend it for compositional functions, called the compositional Z [7]. It gives a sufficient condition for that a compositional function satisfies the Z property, and enables us to consider a reduction system by dividing into two parts to prove confluence.

Definition 3.1 ((Weak) Z property). Let (A, \to) be an abstract rewriting system, and \to^* be the reflexive transitive closure of \to. Let \to_\times be another relation on A, and \to_\times^* be its reflexive transitive closure.

1. A mapping f satisfies the weak Z property for \to if $a \to b$ implies $b \to_\times^* f(a) \to_\times^* f(b)$ for any $a, b \in A$.

2. A mapping f satisfies the Z property for \to if it satisfies the weak Z property by \to itself.

When f satisfies the (weak) Z property, we also say that f is (weakly) Z.

It becomes clear why we call it the Z property when we draw the condition as the following diagram.

\[
\begin{array}{c}
a \\
\end{array}
\begin{array}{c}
\xrightarrow{\times} \\
f(a) \\
\xrightarrow{\times} f(b)
\end{array}
\]

Theorem 3.2 (Z theorem [5]). If there exists a mapping satisfying the Z property for an abstract rewriting system, then it is confluent.
In fact, we can often prove that the usual complete developments have the Z property.

The compositional Z is the following, which is easily proved from Theorem 3.2 with the diagrams in Figure 1.

Theorem 3.3 (Compositional Z [7]). Let \((A, \to)\) be an abstract rewriting system, and \(\to\) be \(\to_1 \cup \to_2\). If there exist mappings \(f_1, f_2 : A \to A\) such that

(a) \(f_1\) is Z for \(\to_1\),
(b) \(A \to_1 B\) implies \(f_2(a) \to f_2(b)\)
(c) \(a \to_1^* f_2(a)\) holds for any \(a \in \text{Im}(f_1)\)
(d) \(f_2 \circ f_1\) is weakly Z for \(\to_2\) by \(\to\),

then \(f_2 \circ f_1\) is Z for \((A, \to)\), and hence \((A, \to)\) is confluent.

One of the simplest applications of the compositional Z is for the \(\beta\eta\)-reduction on the untyped lambda calculus (although it can be directly proved by the Z theorem as in [6]). In [7], the compositional Z is used for the lambda calculus with permutation rules for direct sums such as

\[(\text{case } M \text{ with } \text{inl } x_1 \Rightarrow N_1 | \text{inr } x_2 \Rightarrow N_2) L \rightarrow \text{case } M \text{ with } \text{inl } x_1 \Rightarrow N_1 L | \text{inr } x_2 \Rightarrow N_2 L,\]

which is denoted as \(M[x_1.N_1,x_2.N_2])L \rightarrow M[x_1.N_1L,x_2.N_2L]\) in [7]. Such permutation rules make confluence proofs much harder because of the critical pair: \(M \equiv P[x_1.N_1,x_2.N_2][y_1.L_1,y_2.L_2]K\) is reduced to both

\[M_1 \equiv P[x_1.N_1[y_1.L_1,y_2.L_2],x_2.N_2[y_1.L_1,y_2.L_2]]K\]
\[M_2 \equiv P[x_1.N_1,x_2.N_2][y_1.L_1K,y_2.L_2K].\]

These can be reduced to a common term \(M_3 \equiv P[x_1.N_1[y_1.L_1K,y_2.L_2K],x_2.N_2[y_1.L_1K,y_2.L_2K]],\)
but in \(M_1 \rightarrow^* M_3\) we have to reduce the redex which does not occur in \(M_1\). Due to this fact, we can apply neither the ordinary parallel-reduction technique nor the original Z theorem.

4 Confluence of \(\lambda^\sigma_v\) by compositional Z

In this section, we see that \(\lambda^\sigma_v\) contains similar critical pairs to those in the lambda calculus with direct sums, and that the compositional Z solves the problem.

Let’s consider the term \(M \equiv (\lambda x.N)((\lambda y.K)L)P\), which is reduced to both

\[M_1 \equiv (\lambda x.N)P)((\lambda y.K)L) \quad \text{(by } \sigma_1)\]
\[M_2 \equiv (\lambda y.\lambda x.N)KLP \quad \text{(by } \sigma_3).\]
These terms are reduced to a common term $M_3 \equiv (\lambda y.(\lambda x.NP)K)L$. $M_1 \rightarrow M_3$ is one-step σ_3 whereas $M_2 \rightarrow^* M_3$ consists of two σ_1 steps:

$$M_2 \equiv (\lambda y.(\lambda x.N)K)L \rightarrow_{\sigma_1} (\lambda y.(\lambda x.N)KP)L \rightarrow_{\sigma_1} (\lambda y.(\lambda x.NP)K)L,$$

where the σ_1-redex of the second step does not occur in M_2. This means that we cannot naïvely extend the ordinary parallel reduction, by which M_2 is not reduced to M_3 in one step, and that, in the mapping satisfying the Z property, we have to reduce successive σ-reductions at once. For example, the above example shows that M must be mapped to M_3 or its reduct. We consider the auxiliary mapping $M@N$ to reduce successive σ-reductions such as

$$(\lambda y.(\lambda x.N)K)L@P \equiv (\lambda y.(\lambda x.N@P)K)L.$$

Here, the major difference from [7] is that there are two kinds of permutation rules σ_1 and σ_3 with opposite direction. We consider the following two auxiliary mappings $@_1$ and $@_3$:

$$(\lambda x.M)N@_1 P \equiv (\lambda x.M@_1 P)N \quad V@_3(\lambda x.M)N \equiv (\lambda x.V@_3 M)N$$

$M@_1 P \equiv MP \quad \text{(otherwise)} \quad V@_3 M \equiv VM \quad \text{(otherwise)}$

As for [7], the following na"ive mapping does not satisfy the Z property.

$$x^* \equiv x$$

$$(\lambda x.M)^* \equiv \lambda x.M^*$$

$$((\lambda x.M)V)^* \equiv [V*/x]M^*$$

$$(MN)^* \equiv M^*@_1 N^* \quad (M \text{ not a value})$$

$$(VN)^* \equiv V^*@_3 N^* \quad \text{(otherwise)}$$

For $P \equiv (\lambda x.xy)(\lambda z.v)q$ and $Q \equiv (\lambda x.xv)(\lambda z.z)q$, we have $P \rightarrow_{\sigma_1} Q$, but we also have $P^* \equiv (\lambda z.v)(\lambda x.xv)q$ and $Q^* \equiv (\lambda z.z)(\lambda x.xv)q$, and hence $P^* \not\rightarrow^* Q^*$.

In order to apply the compositional Z theorem, we divide the reductions of λ^* into β and σ, and define the mapping $(\cdot)^S$ and $(\cdot)^B$ as follows.

$$x^S \equiv x$$

$$(\lambda x.M)^S \equiv \lambda x.M^S$$

$$((\lambda x.M)V)^S \equiv [V^*/x]M^S$$

$$(MN)^S \equiv M^S@_1 N^S \quad (M \text{ not a value})$$

$$(VN)^S \equiv V^S@_3 N^S \quad \text{(otherwise)}$$

Theorem 4.1. The two mappings $(\cdot)^S$ and $(\cdot)^B$ (for σ- and β-reductions, respectively) satisfy the conditions for the compositional Z, and hence λ^*_Z is confluent.

The outline of the proof almost follows [7]. However, in contrast to [7], the mapping $(\cdot)^S$ does not necessarily collapse σ-steps, that is, there are terms M and N such that $M \rightarrow_{\sigma} N$ and $M^S \rightarrow^+ N^S$. For example, we have

$$M \equiv (\lambda x.x)((\lambda v.v)w) \rightarrow_{\sigma_1} (\lambda x.x((\lambda v.v)w))(yz) \equiv N,$$

and

$$M^S \equiv ((\lambda x.x)((\lambda v.v)w)^S@_1 ((\lambda v.v)w)) \equiv (\lambda x.x(((\lambda v.v)w))(yz)$$

$$N^S \equiv (\lambda x.x(((\lambda v.v)w))^S@_3 (yz)^S \equiv (\lambda x.x@_3(((\lambda v.v)w)))(yz) \equiv (\lambda x.((\lambda v.v)w))(yz).$$

The σ_3-redex $x(((\lambda v.v)w))$ in M^S is created in the application of $(\cdot)^S$, and it is not reduced in M^S. Hence, we cannot apply the simplified variant of the compositional Z (Corollary 2.4 in [7]) for these mappings.
References

